
r

NASA Contractor Report 181951

Comparison of Two Matrix Data Structures
for Advanced CSM Testbed Applications

M. E. Regelbrugge, F. A. Brogan,

B. Nour-Omid, C. C. Rankin, and M. A. Wright

Lockheed Missiles and Space Company, Inc.

Pa]o Alto, CA 94304

Contract NAS1-18444

December 1989

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(NASA-CP--- l _195 [ ) CnMPAR I£ON

uA.TA £TRUCILIRES FnR AOVANCEO

APPL ICAT INN!_

Co. ) 50 p

OF TWO MATRIX

CSM TEST_ED

(Lockheed Nissiles and Spac_
CSCL 20K

G_/39

N 0-,.0421

UncIJs

0201450



_f

I



Preface

This document is a final technical report of the results of research performed under Task

5 (Methods Task M2), subt_sk 2 of NASA contract NAS1-18444, Computational Struc-

tural Mechanics (CSM) Research. This report summarizes an evaluation of matrix data

structures for use with advanced CSM algorithms and applications. The material pre-

sented herein was derived directly from studies and discussions among several Lockheed

researchers with considerable expertise i_ the programming, use, and architecture of ma-

trix methods for computational structural finite element analysis. Much knowledge and

experience from the programming and use of the STAGS matrix methods were provided

by Mr. Frank Brogan and Dr. Charles Rankin, who have kept STAGS at the forefront of

advanced nonlinear analysis methods research for the past decade. Background theoret-

ical and implementational details were provided by Dr. Bahram Nour-Omid, Ms. Mary

Wright, and Dr. David Kang. Valuable technical background was also provided by Mr.

Phil Underwood and Drs. Gary Stanley and Donald Flaggs.



ii

•



Table of Contents

1

2.

o

J

o

List of Figures ............................ iv

List of Tables . v

Introduction ............................ 1

Matrix Data Structures: Sparse and Skyline Schemes ........ 3

2.1 Testbed Sparse Matrix Structure _. ................. 3

2.2 Generic Skyline Matrix Structure .................. 11

Algorithm Requirements for Matrix Data Structures ........ 14

3.1 Basic Operations ......................... 14

3.1.1 Software Measured Performance ................. 15

3.1.2 Software Theoretical Performance ................ 17

3.2 Advanced Operations ....................... 19

3.2.1 Incorporation of General Constraints - Background ........ 20

3.2.2 Incorporation of General Constraints - Implementation ....... 22

3.2.3 Substructuring Operations - Background ............. 24

3.2.4 Substructuring Operations - Implementation ........... 26

3.2.5 Advanced Solution Algorithms - Requirements .......... 28

3.2.6 Advanced Solution Algorithms- Implementation ......... 28

3.2.7 Hierarchical Convergence Elements (p-Version) - Background .... 29

3.2.8 Hierarchical Convergence Elements (p-Version) -Implementation . . 30

3.3 Summary ............................. 33

Recommendations for Testbed Matrix Development ......... 34

4.1 Incorporation of New Matrix Schemes ................ 34

4.2 Incorporation of a Skyline Matrix Scheme .............. 35

4.3 Generic Environment for CSM Matrix Methods Development ...... 38

4.4 Concluding Remarks ........................ 41

References .............................. 43

PRECEDING PAGE BLANK NOT FILMED

iii



List of Figures

1 Example Finite Element Model ..................... 3

2 Sparse Matrix Nodal-Block Structure .................. 4

3 Record Partitioning Scheme for Testbed Unfactored Sparse Matrix ...... 6

4 Unfactored Sparse Matrix Record Contents for Example Problem ...... 7

5 Record Partitioning Scheme for Testbed Factored Matrix .......... 8

6 Record Contents for Example Problem's Testbed Factored Matrix ...... 9

7 Skyline Matrix Structure for Example Problem .............. 12

8 Skyline Matrix Data Structure for Example Problem ............ 13

9 Alternative Structures for p-Version Skyline Matrix Growth ......... 32

10 Components of the Generic Environment for Matrix Processing ....... 40

iv



List of Tables

1

2

3

4

5

6

7

Example Skyline Matrix Diagonal Pointers ................ 11

Basic Finite-Element System Matrix Operations .............. 14

Study Case Parameters for Matrix Operation Performance Comparison .... 18

Execution Statistics for Matrix Operation Performance Comparison ..... 18

Theoretical Factoring Performance Comparison .............. 18

Basic STAGS Z-System Functions .................... 29

Key Aspects of Matrix Data Structures and Software For

Basic and Advanced Operations and Algorithms ............. 33

Matrix Methods Flowdown Chart .................... 39





1. Introduction

Forming and manipulating large system matrices are key computational elements in

the solution of large, complicated structural mechanics problems. In the typical case, these

matrices are symmetric and sparsely populated, but of very large order, where the number

of degrees of freedom may range from 100 to 100,000. Much research has been devoted

to the formulation of data storage schemes and computational algorithms that minimize

the computational costs associated with critical matrix manipulations. An example is the

development of equation reordering algorithms to minimize the data storage and number of

arithmetic operations required for the triangular factoring of sparse matrices. The benefits

of such developments have been widespread and have enabled the numerical analysis of

very large and complicated structures to be conducted economically on present computing

machines.

Today, the advancement of Computational Structural Mechanics (CSM) as an effec-

tive engineering tool is still focused on increasing economy, although it considers not only

economy of computational resources but economy of personnel resources as well. Accord-

ingly, new methods such as automatic model error estimation and nonlinear substructuring

are being developed to ease the computational burden on both the analyst and the com-

puter. The CS1V[ Testbed software system (see ref. 1) is intended to aid the development

and implementation of these new methods by providing a common environment for the

development and dissemination of advanced CSM algorithms and procedures. As such,

the Testbed must have features which make it amenable to the incorporation of new, per-

haps unforeseen, numerical operations. The purposes of this document are to identify the

computational matrix algebra capabilities required for the extension of the CSM Testbed's

algorithmic capabilities, and to evaluate the suitability of certain matrix data structures

to accommodate these extensions.

This document is divided into three sections. The first section describes data storage

schemes presently used by the CSM Testbed sparse matrix facilities and similar, skyline

(profile) matrix facilities. The second section contains a discussion of certain features

required for the implementation of particular advanced CSM algorithms, and how these

features might be incorporated into the data storage schemes described previously. The

third section presents recommendations, based on the discussions of the prior sections,

for directing future CSM Testbed development to provide necessary matrix facilities for

advanced algorithm implementation and use.

The discussion presented in the following pages is necessarily limited since to evaluate

all promising matrix data structures and their software would require efforts far in excess

of the scope of the present work. Instead, the discussion is concentrated on the details of



only the Testbed sparse matrix and generic skyline matrix data structures and software.

This narrower focus provides for a deeper examination of these two computational matrix

structures and their applicability to advanced CSM algorithms than would otherwise be

possible. The objective of this document is to lend insight into the matrix structures

discussed and to help explain the process of evaluating alternative matrix data structures

and utilities for subsequent use in the CSM Testbed.

2



2. Matrix Data Structures: Sparse and Skyline Schemes

This section describes the data storage structures of the Testbed sparse matrix and of a

generic, skyline-stored, profiled, symmetric matrix. Throughout this section the example

finite element model depicted in Figure 1 will be referenced. This example is a simple

finlte-element model comprising five beam elements, two triangular plate elements, and

one quadrilateral plate element. For purposes of illustration, all six nodes are assumed to

have six active degrees-of-freedom (d.o.f.), providing a total of 36 degrees of freedom in the

entire model. The nodal degrees of freedom are numbered in the conventional sense; one

through three being associated with translational motions in the x, y and z directions and

four through six being associated with rotations about the x, y and z axes, respectively.

Note that the degrees of freedom associated with all translations at node 1 and with y and

z translations at node 4 are suppressed by support boundary conditions.

Example Problem Model:

6 nodes

6 d.o.f./nodc /
/

5

I

2

Element Connected
# type Nodes

1 beam i, 2

2 beam 2, 3

3 beam 3, 4

4 beam 2, 5

5 beam 3, 6

6 plate I, 2, 5

7 plate 3, 4, 6

8 plate 2, 3, 6, 5

Figure 1. Example Finite Element Model.

2.1 Testbed Sparse Matrix Structure

The Testbed sparse matrix data structure is a nodal-block oriented scheme for storing

the elements of the upper triangle of a sparse, symmetric system matrix (see refs. 2 and

3). The Testbed sparse matrix is stored in one of two forms depending on whether the

3



matrix has been factored. The logical structure of the unfactored Testbed sparse matrix

using the interrelationships of the nodal-block submatrices is shown in Figure 2 for the

example problem. Note that each box like

I (1,2) ]

denotes a 6 by 6 nodal-block submatrix connected to the two nodes listed in parentheses

inside the box. In the example above, the block indicated contains the coupling contribu-

tions from nodes 1 and 2. In the example problem, elements i and 6 contribute to this

nodal-block submatrix (1,2). in theexample matrix 0f Figure 2, the only biockwhose

terms are present in the factored matrix but absent in the unfactored matrix:is=marked

with a large "x." _

K ._

(1,1) (1,2)

(2,2)

symmetric

(3,3) (3,4)

(4,4)

(1,5)

(3,5)

(5,5)

(3,6)

(4, 6)

(5,6)

(6,6)

Key:

(1,5)
Indicates 6 by 6 nodal-block submatrices. In
the case at left, the submatrix due to element

connectivity between nodes 1 and 5 is depicted.

Indicates nodal-block submatrix that is not present
in the model stiffness, but will fill in during
factoring.

Figure 2. Sparse Matrix Nodal-Block Structure.



Both factored and unfactored Testbed sparse matrices are stored in a blocked, parti-

tioned record scheme. Individual records are of constant length and contain both indexing

data and matrix values. The indexing data are useful only as integer type, but are stored

physically in the unfactored matrix structure in the same datum precision as the terms of

the matrix itself. In the factored matrix structure, however, the indexing data are stored as

integer type regardless of the datum precision of the matrix values. The record partitions

differ in detail between the factored and unfactored matrix structures, owing primarily to

the incorporation of constraint (d.o.f. suppression) information into the factored matrix

structure.

The record partitioning scheme and record contents for the unfactored stiffness matrix

of the example problem shown in Figure 1 are presented in Figures 3 and 4. To make the

substance of Figure 4 more illustrative, a record length (LREC) of 384 words has been

chosen. The fundamental unit of information in the record partitioning scheme is the

nodal-block subrecord. The nodal-block subrecord comprises nodal index information and

all nodal-block submatrices that contribute to the rows assigned to the diagonal-block

node in the upper triangle of the system matrix. The first node listed in the nodal index

is referred to as the diagonal-block node since its nodal block appears on the diagonal

of the system matrix. The nodal index information includes the number of nodal-block

submatrices present in the subrecord (for the current diagonal-block node) and the node

numbers associated with the columns of these nodal-block submatr|ces. The size of each

nodal-block submatrix is the square of the maximum number of degrees of freedom at

each node. This value is obtained from the START command of processor TAB in that

nodal degrees of freedom constrained throughout the model are specified. For example,

the command START 100 6, would constrain d.o.f. 6 (normal rotation) at 100 nodes, and

the maximum number of degrees of freedom at each node is then 5.

Note that the records are partitioned so that complete nodal subrecords are contained

within one record, i.e., the matrix information associated with a nodal-block row of the

matrix is not allowed to span record boundaries. Thus, the record size is used only as a

data manager parameter, and transmits no specific information about the matrix itself, or

how the record partitions are to be interpretcd. All interpretive information is encountered

sequentially as the record is processed from the first word through the LREC th word.

The record partitioning scheme and record contents for the factored stiffness matrix

of the Figure 1 example problem are presented in Figures 5 and 6. The first entry in

the nodal index (see Figure 5) is the number of the node contributing to the diagonal

submatrix block of this nodal-block row of the factored matrix. This node is referred to as

the "diagonal-block" node. The second entry in the nodal index is the number of degrees-



of-freedom active for this diagonal-block node (in the range 1 through 6). Following this

number are the local degree-of-freedom numbers associated with these active degrees-of-

freedom. Each of these local degree-of-freedom numbers are unique and in the range 1

through 6. Following the local degree-of-freedom numbers is the number of off-diagonal

nodal submatrices appearing in this row of the factored matrix. The final entries in the

nodal index are the numbers of the nodes contributing to the off-diagonal nodal-block

submatrices. For purposes of illustration, a record length (LRA) of 384 words was chosen

for the detail of the record contents in Figure 6, and only the first record is shown. The

subscripts of the D-1 and L terms in Figure 6 refer to degree of freedom numbers, assigned

sequentially in groups of six to each node.

Data Records: n records of length LREC words.

l[2

3

I_ LREC _'7

/
header

Typical Record Structure: /

_ null fill

nodal index nodal-block submatrices

ll:::::',::::

Subrecord Ke___.._y

header

Contents

number of nodal-block rows in the upper
triangle of the system matrix contained in
this record.

nodal index number of nodes contributing to the
nodal-block submatrices in this row and

the numbers of these nodes.

nodal-block
submatrices

6 by 6 submatrices of matrix coefficients
in the rows of the upper triangle of the
matrix connected to the nodes listed in

the nodal index.

Figure 3, Record Partitioning Scheme for Testbed Unfactored Sparse Matrix.

6



1881 3371

(2,3)I 4 3 4 5 6 i (3,3)I (3,4)I (3,5) (3,6)

3841

null fill

Record contents:

3 nodal-block rows

9 nodal-block submatrices (36 words each)

337 words used (47 words null fill)

Record 2:

01 41 761 1511

1891 384 I

! 6 i (6,6) i null fiil ]

Record contents:

3 nodal-block rows

5 nodal-block submatrices (36 words each)

189 words used (195 words null fill)

Subrecord Key

header :_

nodal index

nodal-block ==

submatrices

Contents

number of nodal-block rows in the upper

triangle of the system matrix contained in

this record.

number of nodes contrib.ting to the
nodal-block submatrices in this row and

the n.mbers of these nodes.

6 by 6 submatrices of matrix coefficients

Figure 4. Unfactored Sparse Matrix Record Contents for Example Problem.

7



Data Records: n records oflen_h r, RA words.

1

2

3

,f I
LRA _-q

Typical Record Structure: ,/

t--_ LRA _
_)!!:::i_iii:ii::!i!ii_;4 ..... <.¢;:.-¢';1 ; i i i ;: ; ; ; ; ; ;;,III I1/

f t valuespointers constraint data ac orea matr,x row

and nodal index

Subrecord Key Contents

header

pointers

Number of nodal-block subrecords in this

record.

Physical (word) pointers to start of each
subrecord in this record.

nodal index

factored row
nodal- block

subm atrices

Number of active d.o.f, and d.o.f, indices for

current aode, number of nodal-block row

submatrices to follow and the numbers of the

nodes associated with these row submatrices.

Nodal-blocks of rows of terms in the

upper triangle of the factored matrix

for each active d.o.f, of the current node.

Figure 5. Record Partitioning Scheme for Testbed Factored Matrix.

8



0 41 12|

_ 15811 3 4 5 632 5- I *** D(-41.4) L,4.s) L(4.6, ...1
_,z_:;i.i_iii.;i.;:;!!:!.i.;!.!.!i!:iiiiT?-i_i:_i_i:;_i_?...x_,,Z//I,U/.',;-y/x,).'..-..-:..'/.._:._'ff-_ H IIIIllIIIilIIIIIiiiiIlIIIII,,, l,,,

_H-I-H+HH_I i i i i l i]I II IN I I I I I I ; i HIIi i i J ...... ,,H,_ ...... _N, ,,_]]J!H'_" ..........

***** D'1 L L L L 7-_.I•. L 5.10 (6 6) (6 7) • • • (612) (6,25) • • • (6,30)¢ ) , , , ' . ...................
• , ; ; ; ill ;i;;;;iii i, J tJ t,,,, *,,,, ,i _[!![!n*n !!! !_L!122_._! !!! !!!1!]I!! _''_!_!_!!h'![! _i! !! !!

".'_///_//_iF/_'_)_//_(_l_j_(_/_a_'_j_//_/:_2.p_.'_'_'_:_'_>_i':_T_; . - i i i i, , I 1 , i ][l I i iii i. / / 1/ It_l ,1_1 IxJI tjJ i.i I_

D('s(s) L(8o) ... L018) * * D(-ol.o) L(o.lo) ... L(oas) * * l
/ ' i l ilil ii iiilil,ll, illlll iiill, [ i iii i i, i11 Iiit1[,1111 III Ill'l_llllllllllllll III]

, * • • , D(-l_.n)L(n,12)... L(n.ls)L(n,z)l

1

D(11,1o) L _1o.11) . . • L_IO,18)

".I ',IfI::IllIll: 11'.,/LLII'''_/VIll/tll[l" iI ILLLIIillJLLLLh' I£I LIl LLILLLLII '_''ILlIfLI LI/IIILI :IllIfIll,
I

157,

IILLI'A/''"ILILI/AILLIIllI ,I[I]LLIILILLLLIIIUH-_:"_z2222_z:'_Z_A "/-?5d'L//Z&'UZZ

I , -1 L * *
6 I 0(]3.13) L¢LU4) • • • L(13,36) 0(14,14) L(14,1_) • • • (_4.36)

k..._./"¢ "171,_11 ...................III1'I1' Ill I I1111 III IlIIIl'i i i i JJJ_ 1 LL.L..Lt J_LL .LILL[i nL_L.tJLI._JLLL LI l i j i i i i i, t i i i i i i i i lI Ill nil IllilllllllllIIlIIIII I_ II_l III' I III III 111 1_. IIl 1J.JLL_ JL |JLL_J.

[ D(]J.Ij) L(15.16) . . . L,,._.._6, * * * DJ,I6) L(I6,1z) . . . L¢16,s6) I

313

D(]l]7)L(1718). . . L(17.36 ) * * * * * D¢/sjs) L(ls,lO). . . L(ls,S6)
_;;;_:_j_iii_i_i[_iii_;i`j_i_j_1_!.!!_!!!_!'L_!!!!!_Jt._`[_._!!!'''

fill 384

• - Denotes an unused, subdiagonal entry.

null

Figure 6. Record Contents for Example Problem's Testbed Factored Matrix.

9



As in the unfactored matrix structure, nodal subrecords in the factored matrix are

not allowed to span record boundaries. Unlike the unfactored matrix structure, constraint

data associated with suppression of nodal degrees of freedom are included in the matrix

data records. The factored matrix rows corresponding to suppressed degrees of freedom

are not included in the data. A map is provided at the beginning of the nodal subrecord

to indicate the active degrees of freedom, as an indexed subset (1,...,n) of the degrees

of freedom not constrained on the START card in TAB, for the current diagonal node.

An interesting observation is that the factored matrix data cannot be decoded completely

without additional information about the number of degrees of freedom per node in the

finite element model, and which nodal degrees Of freedom are potentially active. In the

Testbed, this information is obtained from a modeling summary dataset JDF1.BTAB.I.8.

As an aside, one should note that the rather elaborate record partitioning schemes

used for the Testbed matrices are by-products of the architecture of the underlying data

management system (DAL). Three DAL features in particular are responsible for the

original Testbed design choices to place indexing and matrix value data side-by-side in the

data records and to break the matrix storage into fixed-length segments (i.e., records).

These features are:

1) DAL is a singly indexed, hierarchical data manager, so to group data

in logically related sets frequently requires the use of inhomogenous

data records within a single dataset.

2) DAL handles datasets containing fixed-length records only. Different

records in the same dataset cannot have different lengths.

3) DAL is sector (physical disk block) addressable at the finest granular-

ity. Thus, it is required that integer numbers of disk blocks be read

or written through DAL. For practical core memory limitations and

the most efficient use of disk space, the large matrices are blocked

into records that are sized to integer-multiples of the disk block size.

The pertinent observation to be made at this point is that the structure of matrix data is

influenced not only by the structure of the matrix itself (in terms of zero and nonzero coeffi-

cients), but also by the operational characteristics of auxiliary data management software.

Herein lies the most intimate connection between the algebraic and data descriptions of

the system matrix.

10



2.2 Generic Skyline Matrix Structure

The generic skyline matrix data structure, as employed by the SKYNOM software

system (e.g., see ref. 4), is an equation-based, profiled matrix storage scheme that uses a

positional index to provide access to the rows of the lower triangle of a sparse, symmetric

system matrix. Theprofiled matrix form takes advantage of sparsity on an equation-by-

equation basis,: rather than on a nodal basis as in the Westbed sparse matrix structure, by

including only those terms from the first nonzero entry to the diagonal in each row. An

integer index vector, called the diagonal pointer vector, defines row boundaries within a

single, contiguous matrix values record by pointing to each individual diagonal term.

The profile structure of the system matrix for the example problem is shown in Figure

7. The entire shaded area in this Figure consists of individual matrix terms, each of which

occupies a word of storage in a single large matrix values record. The size of the matrix

values record is equal to the value of the last entry in the diagonal pointer vector. Table

1 lists the diagonal pointer values for all 36 degrees of freedom 0f:_l_e example problem.

Note that negative diagonal pointers indicate suppressed degree_offreedom in the model.

The length of any particular row is the difference between the absolute values of that row's

diagonal pointer and the previous row's diagonal pointer (the zeroth row's diagonal pointer

is zero).

Table 1. Example Skyline MatrlxDiagonal Pointers.
r

(Table is 36 x 2)

Diagonal

d.o.f. Pointer

1 -1

2 -3

3 -6

4 I0

5 15

6 21

7 28

8 36

9 45

I0 55

11 66

12 78

Diagonal

d.o.f . Pointer

13 85

14 93

15 102

16 112

17 123

18 135

19 142

20 -150

21 -159

22 169

23 180

24 192

Diagonal

d.o.L Pointer

25 217

26 243

27 270

28 298

29 327

30 357

31 376

32 396

33 417

34 439

35 462

36 486

11



ORIGINAL PAGE IS

OF POOR QUALITY

K .,.

k
ll

k21

k31

k41

k22

k32 k33

k42 k43

/

symme tric

/

'L

Individual

Matrix Terms

2

Key:

\

Matrix terms associated wiih aU 36

d.o.f. (Lower triangular portion only)

Terms equal to zero (identically)
included in profde.

Figure 7. Skyline Matrix Structure for Example Problem.

7

12

p;

J_

!?

: 2. ]i
li:

r

•J!

Lg

, 15

7t



The skyline matrix is stored in two records: an integer record for the diagonal pointer

vector and a floating-point record for the matrix values. In the example problem, the

matrix values record is 486 words long. The diagonal pointcrs and matrix values records

for the example problem matrix are depictcd in Figure 8.

The present implementation of this skyline matrix data structure uses a word-

addressable data manager (GAL-DBM, see ref. 5) so explicit blocking and record par-

titioning schemes are not necessary. In fact, with GAL-DBM's capability to read and

write partial records, dynamic blocking of the system matrix depending on operational

requirements and available workspace was implemented in the SKYNOM package. Dy-

namic blocking of the matrix ensures the most efficient utilization of storage for matrix

manipulations, and provides direct benefits in terms of reduced CPU and I/O costs as

available memory is increased. Furthermore, the analyst does not need to be concerned

about the details of managing record length and available memory workspace.

: : _ 4 =

z

Diagonal Pointers:

Matrix Values:

-1 -3 -6 ...,86i (36 words)

(486 words}

Figure 8. Skyline Matrix Data Structure for Example Problem.

13



3. Algorithm Requirements for Matrix Data Structures

This section explores application-oriented issues of matrix data structures. First, use

of the Testbed sparse and skyline matrix data structures in basic algebraic operations

required by any finite-element analysis is discussed, and the performance of existing soft-

ware for these operations is presented. Second, the applicability of the Testbed sparse

and skyline matrix structures to the execution of advanced algorithms and capabilities

in the Testbed is discussed. This latter section focuses in particular on application Of

the matrix data structures to the use of multipoint constraints, substructuring, advanced

nonlinear algorithms, and p-version finite elements. Most of the discussion in this section

draws on examples from linear formulations of algorithms. Adaptation to nonlinear for-

mulations generally requires only the usual extensions such as iteration procedures and

re-formation of system matrices, and thus simply represents a multiple use of the partic-

ular advanced capabilities. The exceptions to this are the algorithms discussed in Section

3.2.5 for traversing limit and bifurcation points.

3.1 Basic Operations

Both of the basic system matrix organizations and data structures described in the

previous section have proven suitable for use in conventional finite-element analysis. Con-

ventional operations in which matrices of these types are applied include those listed in

Table 2. In addition to these operations, the critical operations of creating both the

structure (topology) and the actual data of the system matrices are not to be neglected,

although the details of these processes are not presented here.

Table 2. Basic Finite-Element System Matrix Operations

=2

Operation Algebraic Representation

Combine: A = c_K +/3M

Multiply:

Factor:

Solve:

Forward reduction:

Backward substitution:

Eigenvalues:

x -- Ay

A= LDL T

Ax: y

Lw = y

LTx W

(K- AM)_b = 0

14



3.1.1 Software Measured Performance

A primary concern in the utility of any given matrix data structure is the efficiency

with which it can be manipulated by computational routines. Any comparison of diverse

matrix data structures should therefore contain some' measure Of Coinputat[onal efficiency.

However, one must be certain io define carefully the parameters and I_m_ts of validity of

such measures in order to be specific regarding the nature of the comparison.

A simple set of comparisons was made between basic matrix operations in the Testbed

sparse matrix environment and in the $KYNOM skyline matrix environment. The com-

parisons were based on elapsed CPU time and direct I/O requests required for matrix

factoring, matrix-vector multiplication, and matrix equation solution using a previously-

factored matrix. The matrix data for the comparison study were created using the Testbed

software and translated to a skyline format for use with SKYNOM. Three finite element

models were used as a basis for comparison; a 1818 d.o.f, space mast (singly laced, 101-

bay triangular truss), a Coarseiy discretized pinched quarter-cylinder model (square mesh)

with 486 d.o.f.,and a i734 d.o:f, zversion Of the pinched quarter-cylinder model. A variety

of nodal resequencing strategies was employed for the cylinder cases to gain the best fac-

toring performance for each matrix type. In all, five different matrix cases were used for

comparison.

Performance data (CPU time and direct I/O requests) were taken immediately before

and after the issuing of a command to invoke the operation being measured. Since both

the Testbed and SKYNOM are command-driven, some overhead is incurred in command

parsing, and this overhead is included in the measurements. To keep the comparisons on

a common footing, each software package was allowed to use up to 200,000 32-bit words as

a workspace, although no attempt was made to optimize the Testbed sparse matrix record

length with respect to workspace usage. In addition, one should note that SKYNOM's

automatic allocation of workspaceand dynamic matrix blocking requires measured CPU

and I/O resources not required by the explicitly blocked sparse matrix. All calculations

were made in double (64'bit) precision. All executions were made in a single job stream

on a VAX-ll/785 computer system to eliminate as much machine-environment variability

as possible.

15



The resultsof the performancecomparisonstudies are presentedin Tables3 and 4 for
the five casesinvestigated. Notable aspectsof theseresults are asfollows:

o The nested dissection ordering works well for the sparse matrix stru¢- :

ture but not very Well at all for the skyline matrix structure. TEe

Gibbs, Poole, Stockmeyer (GPS) algorithm (see ref. 6) seems to wor k

the best for the skyline matrix structure, but causes factoring times

for the sparse matrix structure to rise significantly.

o CPU and I/O demands for factoring operations using good equation

orderings for each system are competitive. In all cases tested, the best

skyline matrix factor times are slightly lower than the best sparse ma-

trix factor times. In some cases, the I/O activity forskyline factoring

is significantly greater than that for sparse factoring.

o The solve operation using t_eTest_ed sparsematr[x_isinv_ia_ly and

significantly slower and more demanding of I/O resources than the

solve operation using the skyline matrix structure.

o CPU demands for the matrix-vector multiply operation are compet-

itive for each matrix structure with ideal equation orderings. I]O

demands using the skyline matrix structure are generally lower than

" - those Us|ng the sparse matrix structure.

Not surprisingly, different equation reorderings have different effects on the opera-

tional requirements of different matrix data structures. These effects are primarily noticed

in factoring costs, since the factoring operation is quite sensitive to the amount of fill-in in

the sparse matrix structure and to bandwidth in the skyline matrix. The nested dissection

ordering minimizes fill-in and thus tends also to minimize the number of arithmetic oper-

ations required in factoring. The performance of the Testbed sparse factoring operation is

particularly troubling in view of this trend since more t|me is taken to execute presumably

fewer arithmetic operations than the skyline factoring using GP$ ordering. Another dis-

turblng feature of the sparse matrix structure and software is the poor performance of the

solve operation. This drawback can be a significant hindrance when executing nonlinear

or iterative algorithms and eigenvalue extractions.

The performance of the Testbed sparse matrix software is indicative of significant

overhead in the software unrelated to the actual numerical operations: Areas from which

this overhead may arise include an inefficient use of available memory workspace and

excessive I/O to load and cycle through many blocks of the topological and matrix data.

The dynamic memory w0rkspace allocation capability of the skyline matrix software seems

16

!.

I:

1i

it

J_
;i

i`¸¸ i_

• i_̧



to provide an advantage primarily in reduction of I/O requests for solve and multiply

operations. In these cases, SKYNOM is able to fit more of the matrix into the workspace

at once, causing fewer I/O requests but more words transferred per request. On machines

where I/O requests dominate I/O costs, this savings can be significant.

Making the Testbed software use available memory effectively is difficult since user

intervention is required to modulate the dataset record sizes of KMAP, AMAP, K and INV

dat_ets (see ref. 7). For fixed-memory applications, even optimal sizing of these datasets'

records would result in a loss of efficiency in the solve operation since the maximum size of

the factored matrix records is determined in the factoring process and the solve operation

is processed on a record-by-record basis. Thus, basic inefficiencies are incurred by the use

of the fixed-length, explicitly blocked matrix data structure. :

3.1.2 Software Theoretical Performance

The operation of schemes for minimizing the system matrix storage and fill-in during

factor!zation iscentral to: the effective use of sparse matrix manipulation software. Results

presented in Tables 3 and 4 for the square-mesh, pinched cylinder case strongly indicate

this dependence, showing a factor of 2.5 better performance for factoring a Testbed sparse

matrix with a fill-minimizing ordering versus a profile-minimizing ordering. This section

presents an attempt to rank the various matrix ordering schemes objectively, i.e., without

consideration of extraneous software overhead. The number of floating-point operations

(flops) required to factor a matrix arising from a square-mesh discretization is used as the

figure of merit.

The statistics for factoring a matrix arising from a 17 × 17 node mesh and from a

31 x 31 node mesh are presented in Table 5. All data presented in Table 5 are nodally

based, i.e., one equation per node. The flop'counts assume that no trivial arithmetic is

done. All matrix reorderings were computed by the Testbed's RSF:Q processor (see ref.

1). The row-by-row ordering referenced in Table 5 is obtained simply by numbering the

nodes sequentially along each row of the mesh.

17



Table 3. Study Case Parameters for Matrix Operation Performance Comparison.

Matriz Size ParametersModel

Designation

I) 101-Bay Mast

2) Pinched Cylinder

3) Pinched Cylinder

4) Pinched Cylinder

5) Pinched Cylinder

Number of

d.oJ.

1818

486

486

1734

1734

Resequencing

Strategy

none

Nested Dissection

Gibbs, Poole, Stockmeyer

Nested Dissection

Gibbs, Poole, Stockmeyer

it1 *

4010

3833

6617

31829

80385

ie_** bwt

1406 1.4%

725 ' 22%

949 14%

3865 15%

6317 7.4%

* Number of submatrlx multiplications required to factor the System matrb (ref. 1, p. 6.S-3)
** Proportional to number of submatrix multiplications to solve system (ref.- i, p. 6.3-4) "

t Normalized Skyline Semi-Bandwidth (number of matrix terms / (number of d.o.f.) 2 )

ii

Table 4. Execution Statistics for Matrix Operation Performance Comparison.

Model

Number of

Performance

Measure

CPU sec.

Dir. I/O Req.

CPU sec.

Dir. I/O Req.

Testbed Operation

Factor

11.84

301

9.19

155

Solve

5.47

256

4.10

178

Multiply

1.65

71

1.22

58

SKYNOM Operation

Factor

9.05

523

8.13

185

3 CPU sec. 15.58 3.79 0.98 4.71

Dir. I/O Req. 175 171 53 169

4 CPU sec. 80.82 9.83 2.94 183.24

Dir. I/O Req. 676 436 114 664

5 CPU sec. 207.23 12.80 3.08 58.56

Dir. I/O Req. 1117 600 115 241

Solve Multiply

1.97 1.70

27 24

0.95 0.55

27 22

0.66 0.46

23 19

7.93 4.32

141 78

3.91 2.50

63 48

< ::_ i
..... i

J_

r

i.

i:

Table 5. Theoretical Factoring Performance Comparison.

-Resequ encing

Strategy

Nested Dissection

Row-by-Row

Gibbs, Poole, Stockmeyer
Nested Dissection

Row-by-Row

Gibbs, Poole, Stockmeyer

Mesh

Size

17 x 17

17 x 17

17 x 17

31 × 31

31 x 31

31 x 31

Non-zeroes(1)

3964

5185

6185

18379

30721

38406

flops

30400

45400

78000

228000

485000

849000

Fill-In

2619

3840

4840

13758

26100

33785

(I)- Nonzeroelementsinfactoredmatrix

(2)- averagesizeofSAXPY loop

Average

Loop Size( z )

6

9

12

9

16

22

18

!:

l,

. Ji

J_



From the data presented in Table 5, one can readily see that the nested dissection or-

dering theoretically requires many fewer arithmetic operations for factoring than either the

natural, row-by-row ordering or the Gibbs, Poole, Stockmeyer ordering. Also, the ratio of

flops between the nested dissection and Gibbs, Poole, Stockmeyer cases is reasonably close

to the ratio of CPU times for these two cases in Table 4. One should note, however, that

the flop-counts for the row-by-row or Gibbs, Poole, Stoekmeyer orderings do not correlate

with the CPU time statistics when comparing Testbed and SKYNOMperformance. In

particular, the Testbed factoring on the 17 × 17 node mesh with nested dissection ordering

exhibits a computational average rate of approximately '376 nodal flops per CPU second

whereas the SKYNOM factoring of the same matrix ordered according to the Gibbs, Poole,

Stockmeyer algorithm exhibits a computational rate of approximately 775 nodal flops per

second (discounting trivial arithmetic).

3.2 Advanced Operations

: virtually all advanced matrix operations Can be described as a suitable combination

of the more elementary operations listed in Table 2. Indeed, this is how the algebraic

descriptions of advanced algorithms are evolved. Two factors impede the adoption of an

analogous numerical approach, however. These factors are the consideration of efficiency

in numerical operations and the restrictions arising from matrix data structures.

Considerations of numerical efficiency often drive algorithms deep into code, since

that is where computational efficiency is most obtainable. Thus, a question arising for

advanced algorithm development is:

o "How easy is the modification of the basic operations' code to accom-

modate necessary new operations?"

As the operations' code is constructed to operate using a particular structure of matrix

data, this first question is directly linked to another:

o "How amenable is the matrix data structure to the new operation's

requirements?"

The answers to these related questions, with respect to the Testbed sparse and generic

skyline matrix software, are the subject of the following sections. The following discussion

explores these questions in light of the requirements of specific near-term Testbed advanced

algorithms and capabilities including general constraints, substructuring, advanced Riks

procedures, equivalence transformation procedures, and p-version finite elements.

19



3.2.1 Incorporation of General Constraints Background

The most general methods for incorporating constraint conditions into a linear system

of equations are to use Lagrange multipliers or penalty factors. The Lagrange multiplier

method has the advantage _satisfying the constraint exactly, but at the expense of added

Lagrange multiplier degrees of freedom. The penalty method avoids the additional degrees

of freedom, but satisfies the constraint only approximately. When penalty factors are not

well scaled, they may reduce the precision of the overall solution or cause the system

matrix to become ill-conditioned (ref. 8). A third method for imposing constraints is the

actual elimination of dependent degrees of freedom according to the constraint relations.

This method is more dli_icult to apply since system matrix coefficients must be augmented

to include the effects of the eliminated, dependent degrees of freedom in the retained,

independent equations. This method has the advantages that t heconstraint _satisfied

exactly and that the problem size is reduced to the number of independent degrees of

freedom only. The drawbacks of this method are that it requires dual sets of node-d.o.f.

mappings, global modification of the system matrices, and special handling of solution

vectors to expand them back to the full system.

The mathematical descriptions of these three constraln_;-enforcement'naethods all re-

quire that the constraint conditions be expressed as

pTqc + RTqu : 0 (1)

where qc are the constrained (dependent) degrees of freedom and qu are the unconstrained

(independent) degrees of freedom. The total system vector is then

{qu}q _ m --

qc

For the constraint set to be minimal and consistent, P must be a square, nonslngular

matrix of dimension equal to the number of constrained degrees of freedom, nc. The matrix

R is rectangular with the number of rows equal to the number of independent degrees of

freedom, nu, and the number of Columns equal to nc. Equation (1) can also be expressed

in terms of the total system degrees o__m.--n :_: ...........................

:.: T - .... : ....

where-n - nu ÷ nc and _L is an n × n_ rectangular matrix

LTq=0 (2)

P

2O

=! [

L

[=

t:

il



The Lagrange multiplier method augments the original system potential energy

r = lqTKq-- qTf
2

with the constraints of Eq. (2) and appropriate Lagrange multipliers A;

= 1-qTKq + qTLA - qTf.
2

Setting the first variation with respect to the q_ and A_ to zero produces

LTq -----0

Kq + LA = f.

Equations (3) can be combined into a single system

(3)

s L

K I

L T I 0
I

(q/{'/A 0

which becomes the new model system used for subsequent, constrained solutions.

In the penalty method, the constraints are enforced by applying large, internal stiff-

nesses acting through L. The potential energy of the constrained system is written

and setting the first variation to zero produces

K + gLL T) q - f.

The penalty parameter, t¢, is chosen to make the terms in LL T a few orders of mag-

nitude larger than their counterparts in K so that the penalty stiffness dominates over the

model stiffness and produces solutions which approximately satisfy the constraint. How-

ever, the addition of several constraints with large penalty parameters can degrade the

precision of the solution by causing some significant model stiffness terms to be treated as

small with respect to the penalty terms.

21



The degree of freedom elimination method uses only the unconstrained degrees of

freedom in the constrained system by eliminating the qc- The elimination is accomplished

by writing the qc in terms of the qu from Eq. (1);

qc = p-TRTqu"

Writing the total system vector in terms of the unconstrained degrees of freedom only gives

EIuq : p_rR T
qc

{qu} _T: q_ (4)

where Iu is the identity matrix of rank nu. Substituting the right-hand side of Eq. (4) into

the expression for the system potentiaienergy andsetting the first variation with respect

to the unconstrained degrees of freedom to zero gives

f Kf,Tq. = f,f (5a)

The new, reduced system to be solved is

Kq. = i"

where R = LKL T and f : _,f and the total system degrees oft'reedom are computed

from-tHe solut_on=qu_by Eq: (4). One should note, however, that the magnitudes of the

terms in P'dlrectiy affeci the conditioning of the constrained system. In particular, if P

is poorly conditioned, K will also be poorly conditioned and the actual constraint relation

may become numericaUy singular, i.e., P m_y not be numerically invertable.

(bb)

3.2.2 Incorporation of General Constraints - Implementation

For any of the three constraint methods described =above, it is necessary to define the

constraints, i.e., to define L, L or R andP. The only _pects to be deteim!ned for a

particular _nite-element program system are (i) how to choose a constraint method, (ii)

how to define the qc, qu in terms of data already accessible to the system, and (iii) how

to define the constraint c0efficidnts ip L. :: °" : _::

7 .... : = ?:

.... l_n the-curre'nt_ CS_MTestbed, the user has control over the definition of nodes, elements,

and:table or system vector-entries. Degrees of freedom are implicitly (never explicitly)

ass g'nh d nodhs.ana ihe_c0upiing of the equilibrium equations is=determined by nodal

22



connectivity rather than degreeof freedom connectivity. With theseoperational features,
the constraint data must be defined in nodal terms.

The nodal-block organization of the Testbed sparse matrix requires that constraint

data be associated with nodes. Accordingly, Lagrange multipliers must be associated with

a "dummy" node, i.e., a node with no structural model degree of freedom. The Lagrange

multiplier method, as implemented in SPAR Level 13A (ref. 9), required the use of the

experimental element facility to define a stiffness matrix format containing the L matrix

for a constraint element connected to m + 1 nodes, where m is the number of nodes having

degrees of freedom corresponding to nonzero terms in L. The number of constraints that

could be associated with a single dummy node would be up to the number of active degrees

of freedom per node. Node-to-node constraints are the only kind of constraints that are

implemented easily in this system.

The penalty method could be readily applied to the Testbed sparse matrix in the

same manner as the Lagrange multipliers were incorporated but without the necessity for

dummy nodes. In this case, a penalty element matrix could be defined to be assembled

directly with all other structural elements.

The degree of freedom elimination scheme is difficult to apply to the Testbed sparse

matrix structure. The implementation would most likely assemble the portions of the com-

plete matrix associated with independent and dependent degrees of freedom in separate

nodal-block matrices and combine them appropriately to produce the global, reduced sys-

tem matrix K. The topology analysis must also account for the connectivity of the nodes

of the dependent degrees of freedom in consideration of nodal connectivity of each con-

stituent independent degree of freedom. Structures analogous to the JDF1.BTAB.1.8 and

CON..ncon datasets (see ref. 7) are required for use with the reduced system since system

vectors are shortened and constraint data are not as straightforward as simple degree of

freedom suppression. Special consideration is needed for the flagging of constrained degrees

of freedom that have been eliminated, since no constraint types in addition to Uprescribed

zero" and _prescribed nonzero" can be accommodated in the structure of GON..ncon and

the constraint relations do not fit into the structure of an APPL.MOTI system vector.

Incorporation of constraints into the skyline matrix structure would be more straight-

forward than incorporation into the Testbed sparse matrix structure simply because the

skyline structure is based on degrees of freedom rather than on nodes. Furthermore,

since no integrated finite-element software analogous to the Testbed has been built up

around the generic skyline matrix package, no potential conflicts exist between d.o.f.-by-

d.o.f, augmentation or reduction of the equation system and auxiliary system data like

the JDFI.BTAB dataset used by the Testbed software. Also, the pointer vector to matrix

23



diagonal terms (referred to asa diagonal-pointer vector) provides a single, minimally sized

map of the contents of the single matrix values record, making access to any portion of

the skyline-stored matrix straightforward. However, if bandwidth minimization schemes

are employed, equivalence constraint information must be taken into account in the deter-

mination of degree of freedom connectivity in order to preserve efficiency in the factoring

of the constrained matrix.

Lagrangian constraints wou!dbe: !mplemented into the sky!!ne matr'txstructure !n a

manner:::_....analogous to the Testbed spars e matrix implementat!0n- _ a special ::constraint

element." The constraint element in thls case would have a minimum of three degrees

of...........freedom, rather than three associate d node s (18 degrees of freedom), and wou!d be

included directly in the topology analysis and matrix assembly processes. Incorporation of

penalty constraints in the skyline matr_ s_tructure isals 0 quite straightforward and would

be accomplished through the device of a Constraint element _formed by a special'purpose

processor. This approach would follOW a new development implemented into the STAGS

program (see refs. 10 and 11) which useci an augmented Lagrangian _api_roach to define

multi-point constraints, eliminating past problems with equation ordering and otherwi_

unconnected structures.

The degree of freedom elimination procedurefor the skyiinematrix data structure is

almost as difficultas=for the Westbed sparse matrix, although none of the incompatibilities

wit_: other mod_-d_ecor:_s:are _present: _structure_is_sl-mp_fleci th-rr0ug_e use

of the diagonal: po|nter vector, which is defined by only the 10Test'referenced degree of

freedom in any equati0-n, rather than lJy all connectedn0des:=(or degrees of freedom).

In the skyline format as in_ the Te_t:b_e-d: sparse format; matr_ "coefficients would most

probabiy best be :caiculatecl_0n a term-by-term basis and:assembled into a- reduced-order

system matrix.

3.2.3 Substructuring Operations - Background

Wl_e use of substructures -pro:m:ises __reat :payoff in reducing the size of very large

analysis problems. In global-local analysis, substructuring is a crucial procedure to remove

slowly varying, global phenomena from a h!ghly detailed, perhaps nonlinear, local model

without ad hoc assumptions regarding local boundary conditions. :

The procedure used in substructuring is to express the degrees of freedom associated

with some subregion of the domain, called the interior domain, ]n terms of the degrees of

freedom in some other subregion of the d0_ain, called the boundary _bma|h__l_0:_c_)mplish

24

i.!

t

i.!

i

! =



this, the following partition is used for the system equilibrium equation:

[ K T Kbb qb fb

(6)

The interior degrees of freedom, qi, are elim!nated to produce the equilibrium equation in

terms of the boundary degrees of freedom:

(Kbb -- KTK_IKib) qb = fb - KTK_Xfi

with

qi = K_ I (fi - Kibqb)

Note that when a diagonal-scale factoring of the interior matrix Kii is used (Kil =

LDLT);

T -1
KibKii Kib = wTD-1w

where

L TW = Kib

The computation of w requires only a single-pass reduction and can save approximately

half the cost of a full, forward-reduction and back-substitution solution procedure.

For multiple substructures, each interior domain is expressed in terms of a set of

retained boundary degrees of freedom, whose matrix coefficients are assembled into the

final retained equation. In the nonlinear case, degrees of freedom associated with the

nonlinear domain are also included in the retained system, which is then solved using

nonlinear procedures.

An alternative approach to substructuring, and that taken in the substructuring capa-

bility presently implemented in the CSM Testbed, is to express the motion of the boundary

as a linear combination of suitable boundary functions, by. This approach is from SPAR

Level 13A (ref. 9). These boundary functions are the total displacement pattern of the in-

terior and boundary degrees of freedom under a unit-imposed displacement at exactly one

boundary degree of freedom, with all others suppressed. Thus, the number of boundary

functions is equal to the number of boundary nodes times the number of degrees of freedom

per node. The by also contain contributions to the motions of the interior domain degrees

25



of freedom. The remainder of the interior motions are described through a user-defined

set of interior displacement functions, qY" The displacement of the entire domain is

nb nl

q = Z bjxj + _ qkYk (8)

j=l k----1

where nb are the boundary degrees of freedom, ni are the interior displacement functions,

and the x i and Yk are the amplitudes of the jth boundary function and k th interior dis-

placement function, respectively. Denoting the matrix whose columns are the bj as B and

the matrix whose columns are the qk as Q, the equiiibriumEq. (6) can be rewritten as

BTKB

0

o

QTKQ

(o)

The decoupled system of Eq. (9) can be solved for the amplitudes of the boundary functions

and the interior displacements. For the static problem, an exact solution is obtained when

the Q contains an interior displacement vector due to is with fb = 0. Otherwise, an

approximate solution will result in the interior domain causing the global solution also to

be only approximate.

3.2.4 Substructurlng Operations - Implementation

The Testbed sparse matrix substructuring scheme requires the following calculations:

1) Form the full system matrix K.

2) Factor K with all boundary degrees of freedom prescribed and solve

for the n b boundary functions b i.

3) Solve for the interior displacement functions qk.

4)
NT N

Calculate BTKB and Q KQ and store as full, lower-triangular

matrices.

5) Factor BTKB and QTKQ and solve Eq. (9).

6) Expand the solution vectors x and y into full system solution vectors

q = Bx + Qy.

The steps indicated above are implemented in the CSM Testbed for dynamic analysis

through several processors: K, INV. SSOk. AUS/SSPREP. AUS/SSM. AUS/SSK. SYN.

26



STRP. and SSBT. At present, the detailed structure of the matrices generated by SYN is

not known. Neither is the compatibility of SYN matrices with INV and AUS/PROD known.

One characteristic that is documented is that SYN must work with models using no less

than 6 degrees of freedom per node. The only Testbed substructuring procedure presently

fully documented for use is for substructured vibration eigenvalue analysis.

Management of substructures in the Testbed is accomplished by segregating individual

substructures into separate data libraries. Thus, confusion over domain-specific tabular

data (e.g., JDF1, ALTR, JLOC, JREF and CON) is avoided in operations using "full

model" processors like INY and $$0[. for individual substructure systems. Thus each

substructure model can retain its own local system matrices.

Aside from the definition of substructure interior and boundary domains, two unique

capabilities are required to implement a partitioned substructuring _cheme effectively.

These are (a) a capability to extract or construct the boundary coupling matrix K_b and

(b) the upper-triangular matrix solution procedure to determine w.

The Kib matrix can be formed directly from the boundary functions matrix B by

extracting only those terms corresponding to interior degrees of freedom, but computation

of the B matrix requires nb complete solutions (forward and backward substitutions).

Computation of the w matrix requires half the work, but assumes the coefficients of K_b

are available in a vector-block form. The complete Kib is, of course, already available in

the assembled system K, but extraction from that structure would be difficult, especially

using the Testbed sparse matrix data structure. A more effective approach might be to

use a substructure assembler processor that would assemble the K;_, Kbb and K_b directly

from constituent element matrices. In this way, bandwidth minimization techniques could

be applied independently to the diagonal submatrices K/_ and Kbb,

A very general matrix assembly routine would also aid in forming the Schur comple-

ment

(Kbb- KTK_iK,b)= (Kbb--wTD-Iw)

since the matrix product will, in general, be full while the I_bb may be sparse. At present,

no capability exists for combining Testbed sparse matrices with full, square matrices or

matrices of differing topologies.

The skyline matrix organization offers little formulative advantage over the Testbed

sparse matrix system if an approach similar to that taken presently in the Testbed is

followed, i.e., the boundary-function matrix reduction is used. If, on the other hand,

a partitioning scheme were to be used, the picture changes slightly since significantly

27



more control over the submatrix assembly process could be designed into a needed skyline

matrix assembler. Also, the triangular-matrix solution operation is presently available for

the skyline matrix structure.

3.2.5 Advanced Solution Algorithms -Requirements

Advanced nonlinear solution algorithms, like the Riks (see refs. 12 and 13) and

Crisfield (see ref. 14) methods, generally require some special handling of system ma-

trices near limit and bifurcation points. The equivalence transformation algorithm (see

refs. 15 and 16) has been developed to select appropriate soiut]0n paths beyond imminent

bifurcations. Many of these algorithms treat the critical points using a reduced system

calculated by transformation of the full system.

While the requirements of each nonlinear solution algorithm differ in detail to a great

extent, common elements can be extracted and used to formulate a generic toolkit of neces-

sary linear algebraic operations. Such an approach has been taken in the STAGS program

wherein a group of utilities, called the Z-system (see ref. 11), has been created and is

presently being used to provide the computational functionality necessary for executing

the enhanced Riks and equivalence transformation algorithms. The functionality of the

Z-system encompasses the basic finite-element operations enumerated in Table 2 plus addi-

tional operations to (a) suppress and enable individual degrees of freedom dynamically, (b)

extract values of degrees of freedom, (c) assemble system vectors at the element level, and

(d) compute matrix-vector products on an element-by-element basis. The basic Z-system

functionality is presented in Table 6. Many functions are simply vector manipulations and,

as such, do not depend on the architecture of system matrix software or data structures.

3.2.6 Advanced Solution Algorithms - Implementation

Emulation of the Z-system functionality using the CSM Testbed sparse matrix struc-

ture requires minimal enhancement, providing the combination of system matrices is re-

stricted to matrices of identical structure, and software is constructed or extracted to

modify the packed-word entries in the dataset CON..ncon outside of the processor TAB.

A capability for vector assembly is necessary in the Testbed, as is one for element-by-

element matrix-vector multiplication (function I_XVEC in Table 6). Based on experience

with STAGS, these two operations can save significant storage and I/O costs during non-

linear iterations.

28



Table 6. Basic STAGS Z-System Functions

Function Algebraic Representation

ZADD(vl,al,v2,a2,v3,a3)

ZASS(sky,kl,k2,s,a)

ZDOT(vl,v2,s)

ZFACT(a,v)

ZFIX(vl,v2)

ZGET(v,n,id,s)

ZMAX(v,s,i)

ZMOVE(vl.v2)

ZMULT(vl.v2.v3)

ZMXVEC(k,vl.v2,n)

ZPUT(v.n,id,s)

ZSET(v,s)

ZSMUL(f,s)

V 3 _ _iVl + OL2V2 + OL3V3

A =Kl +aK2

G -----Vl'V 2

A _ L(A = LDLT), v ¢= diag{V}

v_, = O if[ vl, =0

,_i = rid;, i = 1, n

a = rnax{vi}

V 2 = V I

U3_ = UIIU21

V2_ =KvI_, i= l_n

Vidl = 8i_ i _ 1, n

vi = a, i----1,n

f: af

One difficulty with the Testbed is the treatment of prescribed nonzero degrees of

freedom in the solution procedure. Presently, the internal force contributions of specified

degrees of freedom are calculated as a by-product of the forward reduction procedure during

solution. The matrix factoring procedure is constructed so as to keep appropriate stiffness

terms in the factored matrix to enable this linear internal force to be computed correctly.

In nonlinear iterations, however, it is most desirable to calculate the nonlinear internal

forces in element-level software in order to update the residual force vector correctly. This

approach makes using the Testbed's SSOL processor in nonlinear iterations awkward, since

different constraint values need to be employed at different stages of the solution process

in order to ensure the correct calculation of the residual force vector.

Use of a skyline organization in the Z-system functions would be slightly more straight-

forward than use of the Testbed sparse matrix structure simply because of the inherent

d.o.f.-by-d.o.f, organization of the skyline matrix. This skyline format makes single-

equation updates much more straightforward. Also, considerable experience is available

with the data architecture in the STAGS implementation, which uses a skyline matrix

structure.

3.2.7 Hierarchical Convergence Elements (p-Version) - Background

New finite-elements are currently being developed that use increasing orders of orthog-

onal polynomials to estimate convergence behavior and discretization errors in structural

29



models. The displacement formulation of these elements, called p-version finite elements,

describes element displacement fields in terms of amplitudes of assumed orthogonal func-

tions. Thus, the degrees of freedom in a p-version element are not necessarily nodal dis-

placement components, but are amplitudes of assumed-displacement functions which may

have zero or nonzero values at the element nodes. The hierarchical displacement functions

are analogous to conventional finite-element interpolation functions, but are chosen in such

a way that the contributions of higher-order functions are orthogonal to all lower-order

functions in the hierarchy.

Because of the hierarchical nature of the assumed shape functions, system matrices

assembled for a given element order are strictly a subset of stiffness matrices for higher

element orders. This attribute is made possible by the orthogonality of the assumed

functions, and can result in significant savings in forming and factoring successively higher-

order system matrices. Such economy enables the practical estimation of convergence and

errors of discretization in p-version finite-element models.

3.2.8 Hierarchical Convergence Elements (p-Version) - Implementation

The essential aspects of the p-version formulation as far as system matrix implemen-
tation is concerned are:

1) Elements (or, equivalently, nodes) can be associated with a highly

variable number of degrees of freedom

2) Submatrix factorization and solution capabilities can provide signifi-

cant computational savings in operation

The first point above makes thep-verslon finite elements Very di_cult to integrate

with the present Testbed sparse matr[xs_rUcture. T__y'_s_dueto-t_e no_ai: _

block orientation of the sparse matrix and the hard-wired fact that nodes in the Testbed

cannot be associated with more than 6 degrees of freedom. Schemes to circumvent this

restriction are either to alleviate the restriction of 6 degrees of freedom per node, or to

allow provisions to create "dummy" or "pseudo" nodes that can be used as dictated by the

flow of the refinement process: The first approach requires several coded sixes ("6 _ ) to be

parameterized throughout the Testbed and would without question be a tedious process

whose correct completion would be virtually impossible to assure. The second approach

is awkward and eliminates the utility of the system vector data structure, since system

vectors would have to be sized to the upper bound. Storage and I/O costs could easily

become excessive just carrying around the excess n0des :especially in the early stages of

the analysis where perhaps a majority of the nodes would not be needed.

3O



Implementation of the p-version elements in a skyline matrix organization is much

more straightforward, since the matrix structure is natural degree of freedom oriented,

and can be dynamically extended without changing the majority of the matrix. Thus,

the skyline-stored profiled matrix has a natural hierarchical structure, analogous to the p-

version elements themselves. One present difficulty in implementing the p-version elements

in a skyline matrix system is the fact that the GAL data manager does not presently

allow dynamic extension of record boundaries. Therefore, the p-version would have to be

implemented in such a way so as to create new matrix records at each increase of order,

but the majority of the contents in these records would be simply copied, rather than

recomputed.

An interesting issue about economy of storage and factorization costs arises when

one considers the alternatives for growing the skyline matrix structure as the order of the

element functions grows. This issue is illustrated in Figure 9, where a basic skyline matrix

is shown along with two possible growth versions of the matrix. In the scenario depicted

on the left, the additional terms due to p-refinement have been simply added to the end

of the matrix. This alternative is referred to as the matrix augmentation approach. In

the scenario depicted on the right, the additional terms have been assembled directly into

the matrix interior. This alternative is called the matrix re-assembly approach. As can

be seen from the relative dimensions of the two matrices in the lower half of Figure 9, the

matrix on the right has a lower maximum bandwidth, a lower average bandwidth, and a

lower total profile. Presumably, factorization costs for the matrix on the right would be

less than for the matrix on the left, however, the factored portion of the matrix up to

the first row corresponding to added terms remains unaltered and can thus be re-used in

operations involving the factors of the augmented matrix.

Intuitively, it seems natural that some breakpoint would exist when the size of the ma-

trix and the number of additional terms due to p-refinement reach values that equalize the

cost of the two approaches; augmentation and partial factor]zation versus re:assembly and

complete factorization. Both methods would therefore be useful generally in p-version ele-

ments and algorithms. A skyline matrix structure could be made to admit both approaches

providing very general matrix assembly and matrix factoring utilities are developed. The

assembly would necessarily have to account for augmentation and insertion of matrix rows,

and the factoring would have to be able to begin from a partially factored matrix state. To

admit further research in the area of computational methods for p-version finite elements,

both schemes should be made available in any general package of matrix operations.

31



.... E!

One should note that hierarchicalconvergence elements based on non-orthogonal func-

tions could also be developed and used. The matrix issuesfor this case are largely the

same as for the case of orthogonal function hierarchies,with the exception that the matrix

augmentation approach is no longer possible since all parts of an element's matrix are

modified upon refinement.

Basic Matrix Structure

for lowest-order polynomials

m m

Element Contributions

u

li!!!iiii!iii!ii!iii!ii!iiiii 

Element No.

- " ............. 1

...............

..................

............... 4

......... _ ..... 5

: £'._

_.

Matrix after p-version Refinement of Elements I, 2 and 5

m m

iiiiiiiii ijt,,,, 
(a)

Augmented Matrix

.::i:_f:':_:__..::_:_8k_:_:_:_:i::..

.'-::-_:-::i:_.::i::_:?-i:?-_-_:::_:i:::_:_-

IIllllIIIIIilIIIIIIIIIIIIIItlIIilIIIIN

(b)

Re-A ssembled Matrix

Figure 9. Alternative Structures for p-Version Skyline Matrix Growth

32



3.3 Summary

A summary of some key points addressed in the foregoing discussions of advanced

capability implementation appears in Table 7. This Table is intended for quick reference

to the key points brought out in the previous text. Conclusions and discussion based on

these points is presented in Section 4.

Table 7. Key Aspects of Matrix Data Structures and Software

For Basic and Advanced Operations and Algorithms

Operation Testbed Sparse Matrix Generic Skyline Matrix

-k Dynamic out-of-core blockingPerformance on Basic Op-
erations:

Factor

Multiply

Solve

Constraints:

d.o.f, suppression

Lagrange multiplier

Penalty element

d.o.f, equivahncing

Substructuring

Advanced Solution Algo-
rithms

p-versionFiniteElements

q- Topology information
explieidy stored.

-- Inefficient implementation.

Good overall with proper order-
ing. Flop rates lower than ex-
pected.

Good

Notably slow

Cryptic packed data

Node-to-node constraint straight-
forward. Awkward for general
fase because of nodal architec-
l_ure

Straightforward

Very difficult due to nodal archi-
tecture and supporting data struc-
ture assumptions.

Present approach costly and spe-
cialized
Need substructure assembler

Basicoperationsavailable.Treat-
ment of specifieddisplacements
insolutionisawkward. Dynamic
d.o.f,suppressionneeded.

Severely restricted by nodal ar-
chitecture and 6 d.o.f./node as-
sumption

Good overall with proper order-
ing. Requires more flops than
sparse format.

Good

Good

Simple sign flag

Straightforward

Straightforward

Must be builtintonew assembler.

Triangular matrix solve available

Need substructure assembler

Straightforward Z-system as in
STAGS

Straightforward. Amenable to ei-
ther reassembly or augmentation
approaches with partialfactoriza-
tlon

33



4. Recommendations for Testbed Matrix Development

The preceding discussions focused on the extension of current Testbed capabilities to

accommodate a variety of advanced analysis capabilities. Assumed in this discussion was

that the characteristics of the most basic levels - the system matrix manipulation software

and data structures - determine the feasibility of upgrading of the Testbed's algorithmic

capabilities. This assumption is not strictly true, since high-level programming languages

afford sufficient flexibility to implement almost any scheme regardless of how intricate

or particular it may be. But given the stated purpose of the Testbed (to aid technology

advancement by integrating CSM research and development through a common, extendable

software architecture), the more basic approach seems more likely to succeed by laying a

solid foundation for further Testbed and CSM development. The discussion presented in

this section proceeds from this premise and focuses on defining a development path that

simultaneously assures flexibility in use and extension, and efficiency in operation.

This section is divided into three main parts. The first part discusses the implemen-

tation of new matrix data structures and associated computational facilities in the CSM

Testbed. Particular attention is given to the implementation of a generic skyline matrix.

The second part focuses on the design of a generic environment for further development

of matrix methods in the CSM Testbed and for incorporation of alternative useful matrix

data structures and computational modules. The third section contains some concluding

comments and observations about matrix methods development in the CSM Testbed.

4.1 Incorporation of New Matrix Schemes

Incorporating new matrix structures and computational utilities into the CSM Testbed,

whether to supplant or augment the present sparse matrix capability, requires several spe-

cific requirements to accommodate the advanced algorithms discussed in Section 2. These

requirements are:

1) A flexible, substructure-oriented topology analysis and system matrix

assembler. Critical features of the assembler include the ability to as-

semble diagonal and off-diagonal substructure matrix blocks, ability

to use degree of freedom or nodal resequencing lists calculated by

external utilities, and the ability to assemble only specified elements

and/or groups of elements. The ability to handle d.o.f.-equivalence

constraint matrices is desired, but not required, provided that a ca-

pability to assemble Lagrangian or penalty constraints is provided.

34



2) Matrix computational facilities to perform all of the basic operations

listed in Tables 2 and 5including a separate facility for either the

triangular matrix solve operation or direct computation of the Schur

complement. These facilities require a data interface to the Testbed

system-vector data structure.

3) A facility to enable the dynamic suppression of selected degrees of

freedom for use in conjunction with advanced nonlinear continuation

algorithms.

Any matrix data structure and associated computational software to be implemented

in the Testbed should be extensively documented as to structure and usage. Since the

CSM Testbed is to serve as an integrating platform for advanced methods, many of which

are yet to be defined in detail, the operational particulars of the Testbed software must be

as clear as possible. This requirement is especially critical with respect to matrix software

and data structures since mat_'ix algebra operations form the computational cornerstone

of numerical algorithms.

4.2 Incorporation of a Skyline Matrix Scheme

A logical first step toward providing advanced matrix capabilities in the CSM Testbed

would be the implementation of the generic skyline matrix data structure and utilities. This

development is supported primarily by considerations of flexibility and an unquantified no-

tion that algorithm development time and effort would be reduced through the availability

of a simple and flexible matrix data structure, particularly in cases where system matrix

data must be specially modified or accessed in algorithmic operations.

The adoption of a skyline matrix scheme will not adversely affect the computational

efficiency of matrix operations in the Testbed. The computational efficiency of well-coded

skyline matrix utilities is, at the very least, competitive with the Testbed sparse matrix

utilities, based on the results of the performance survey described in Section 3.1.2. The

primary advantages of the SKYNOM skyline matrix software from a performance stand-

point arises from its flexible use of memory resources to reduce I/O costs for out-of-core

solutions, and its native use of the GAL nominal data manager. Potential advantages also

should be noted for executions on vector processing computers, where the length of the

matrix row vectors in the skyline structure makes possible significant savings through the

use of vector arithmetic.

The flexibility of a skyline matrix data structure is due to its simplicity. The Testbed

sparse matrix structure is blocked into artificially fixed-length records, each an amalgam

of indexing and matrix data that cannot be decoded without access to external data

35



structures. The skyline matrix data structure, on the other hand, is self-contained and

separates indexing and matrix values data into two simple records. The entire structure of

the skyline matrix is available through examination of a single, system-vector-sized index.

The word-addressable capability of the GAL data manager makes access to portions of

the skyline matrix values record straightforward. A useful addition to the skyline matrix

data structure would be to incorporate topological data as discrete record groups in the

matrix dataset. These data would preferably describe the equation ordering of the matrix

and the element-equation connectivity. In cases of substructure matrices, lists of boundary

and interior nodes or degrees of freedom could also be stored.
........ L_ -- =

The major drawback of the skyline matrix structure is that it potentially requires

more external storage than a sparsely stored matrix. In cases where external storage is at

a premium relative to memory utilization and I/O activity, the sparse matrix makes more

sense. However, these cases appear only rarely and do not present a sufficient impediment

to preclude the adoption of a skyline matrix format for the stated reasons of efficiency and

flexibility.

The steps necessary to implement a skyline matrix system in the CSM Testbed closely

parallel those outlined in Section 4.1 and include:

1) Construction of a flexible skyline matrix assembly program. As noted

in the discussions of Section 3, an assembler processor capable of as-

sembling element matrices, full square matrices and skyline matrices

of different orders and topologies would be ideal. Also, a capability to

assemble vector blocks representing the off-diagonal coupling terms

(Kis) of substructured matrices should be included, along with the

capability to process d.o.f.-elimination type constraints. The develop-

mental steps necessary to implement these capabilities in the Testbed

are:

a)

b)

c)

Construction of modular subroutine or function entry

points to access Testbed element connectivity and matrix

data.

Construction of a basic skyline matrix assembler processor

to provide the same functionality as the present Testbed

sparse matrix assemblers K, KG and M plus the capability

to include previously assembled skyline matrices in a new

skyline matrix.

Addition of substructuring capability to the skyline ma-

trix assembler to assemble the off-diagonal matrix blocks.

36



d) Implementation of a means to define equivalenced con-

straint relations in some Testbed modeling processor and

to assemble skyline matrices subject to these constraints

in the skyline matrix assembler processor.

2) Construction of a utility-oriented skyline matrix processor to provide

all matrix functions of the Z-system (Section 3.2.5) and decoupled

forward-reduction and backward-substitution functions to assist in

the efficient implementation of substructuring procedures. This sys-

tem would ideally be based on the present SKYNOM software to

take best advantage of previous developments, particularly in the dy-

namic blocking of out-of-core matrix operations. The development

steps necessary to implement this facility are:

a) Extract SKYNOM kernel routines and place them in a

utility-oriented processor shell constructed for use with

the Testbed.

b) Implement dynamic equation suppression and enabling for

unfactored skyline matrices.

c) Implement a staged-factoring procedure to support l>-

version finite element development.

The functionality of the Testbed system would not be impaired during the execution of

the above development steps. To ensure this, work would progress on the basic capabilities

outlined in the above steps l(a), l(b) and 2(a) simultaneously. Once these steps were

completed, the skyline matrix system would encompass all of the present Testbed matrix

capabilities and could thus replace it entirely. Further developments would proceed in an

evolutionary manner with new capabilities (items l(c), l(d), 2(b) and 2(d), above) coming

on-line as available.

One should note that the prior existence of and experience with skyline matrix software

like SKYNOM and the STAGS Z-System are substantial benefits to the economy of the

implementation effort required for a Testbed skyline matrix capability.

4.3 Generic Environment for CSM Matrix Methods Development

Further extendability of matrix methods in the CSM Testbed would be greatly facili-

tated by a computational environment that would provide many useful functions to matrix

methods and algorithm developers. Such functions might include straightforward access

to element and system vector data, powerful utilities for local data management, and fa-

cilities for command-language interpretation. Collection of such functions under a single

processor umbrella would aid Testbed algorithm developers by unifying the context within

3?



which diversematrix methodswould be usedand providing a capability to use diverse ma-

trix data structures and software without changing matrix processor syntax or contextual

assumptions (e.g., how to access vector data). This section discusses the basic design of

such a system, called the Generic Environment for Matrix-Processing, or GEM-P.

Key features of a generic environment for matrix processing include:

• Ability to _plug-in" software for conventional algebraic operations

with various matrix data structures. This feature would put new

matrix structures and computational methods directly into the hands

of CSM algorithm developers and helps to eliminate repiicat|on of

software for user-interaction by matrix methods developers.

A unified system for parsing command input separate from computa-

tional software to decouple the formulation and use of higher-level al-

gorithms from the details of individual matrix processors, data struc-

tures and conventions.

Straightforward I/O utilities to assist developers in the construction

of out-of-core and parallel processor matrix utilities.

Comprehensive and flexible local data management to eliminate un-

nessary I/O and ensure efficient use of memory resources without

undue burden to matrix software developers.

A schematic diagram of a suitable generic environment is presented in Figure 10.

The command parser and external directive handler functions are served presently_by the

Command Lahguage=L_terface Pro_am-_IP) segment of the--T_estbedarchitecture. To

process a generic algebraic expression or function into a form suitable for execution, a

detailed expression parser and checker is necessary. The form produced by this parser

would be an execution stack that would be processed by the computational interfaceto

invoke computational modules and to load and store data as necessary. A table of the

flow of an algebraic expression through its various forms from algorithmic through the

invocation of the actual computati_onal routines ispresented in Table 8. Table 8 isintended

to illustratethe existence of and distinctionsbetween algebraic operations at different

conceptual and software levels.

38



Table 8. Matrix Methods Flowdown Chart.

Expression

Representation

4nt=Sq+fo

U
f_int = Kl*q +

K1 q multiply

fO add

f_int store

fO

U
call MXMVEC( K1, q, x)

call VECADD ( x, f0, x)

call STORE ( x, f_int)

Processing
Level

Algorithmic

U
User Input

U
Internal Stack

Function

Invocation

Provided

by

Algorithm

developer

U
A nalyst/User

U
Command

Expression

Parser

(soft ware)

U
Matrix Methods

Researcher

and Developer

The execution stack, computational interface and routines and local data complex

form the computational engine of the matrix processor. Standardized computational and

local-data manager interfaces decouple the details of the remainder of the matrix processor

from the details of the computational modules making the entire package generic. Symbol

tables and a flexible expression parser are conveniences to allow algorithm developers to

express their algorithms in an algebraic form, rather than a cryptic form like that em-

ployed in a functional execution stack. Further environmental conveniences might include

a numerical debugger and a comprehensive performance measurement facility.

The natural first step to the development of the generic enviroment for matrix process-

ing is the definition of the computational and local data manager interfaces. Once these

have been defined, a rudimentary processor can be constructed based on algebraic data

symbols and a functional, stack-oriented command syntax. When the expression parsing

and checking routines are complete, they can simply be added on top of the function stack

already in use.

39



.;>:¢".¢.:-:-:.:-:.:-:_<.:.:.:+:-:.x.:.:+:.:.:.:+:.:.:.:.:.:+:.:..:.:.:...:....:. -:....:...x.:.:.:.:.:.- ,:._:_._:.:.:_.:.:.:.:+_.>:_=.:.:.:.;_:._.:::.:._.:...x._..+:._:_.:_.:: L

ii CLIP _i
Command _:_

Parser i!i

,xt°m.,l! l,,_bo, t " ,_0,..,ooj
::i! Directive i!ii / Table Mgr. J Parser I

iii Handler j!!_ ..... _f i

12_ °' I , J_ E_0_.s,onr

/ i_.................._7::2::?................i
:: L Stack J _

Looaoatar. I *
!ii ' ,- Computational Modulesi_i - i
: _ "_ Ax = b t SOLVg ;_!'_

_; Local

;_::(,. Memory I_ I Ab=x ] .UT-T

i! _ X_ t A = LDI_] I'ACTOg

\ etc.
ii Computational

ii Engine

Key: _ Lnternal Data _ Logic (code)
Entities Entities

_ External Data

Entities (databases)

,_oe

Figure 10. Components of the Generic Environment for Matrix Processing.

4O



4.4 Concluding Remarks

The purpose of the Testbed is to promote advanced methods research and development

for analyzing the aerospace structures of the 1990's using parallel and vector processing

computers. The present Testbed software must be enhanced to provide an environment for

advanced development. New flexible and extendable matrix data structures and utilities

are necessary to enable the Testbed to fulfill its role in the productive development of

improved computational structural mechanics algorithms.

A simple repackaging of the logic structures and functional organization of the SPAR

matrix processors in a modern, structured form is of limited value. The explicit nodal

orientation of the system matrix structure should be abandoned and all matrix operations

should be made available in the context of a single processor, rather than in the present

menagerie of TOPO, K, M, KG, INV, SSOL, AUS, SYN, etc. While the nodal orientation

of the system vectors is convenient from a usage standpoint, one should recognize that

it is the function of the finite-element formulations, not the matrix algebra software, to

translate the governing partial differential equations into an algebraic form. Requiring the

matrix software to conform to a specific finite-element context severely limits the algebraic

utility of the matrix software while providing only marginal convenience in conventional

executions. What is required is a different approach - one that ensures flexibility while

not sacrificing functionality or efficiency.

The advocated approach is to develop the generic environment for matrix processing,

discussed in Section 4.2. This approach is a departure from past, functionally oriented

approaches in that the matrix software environment is to be constructed without specific

reference to particular matrix data structures or software kernels. Instead, an accom-

modating standard interface set is to be used to allow multiple kernels to be referenced

within a single processor. Such an approach ensures a contextual uniformity to the invo-

cation of all matrix software and reduces the workload for any subsequent CSM researcher

implementing new matrix tools since user and database interfaces are provided with the

environment. One of the goals of this approach is to ensure that the _environmental"

software is not unduly burdened with overhead, so that the kernels themselves can be

optimized to produce run-time efficiency.

Finally, while this document does not address matrix data structures other than the

present Testbed sparse and a generic skyline structures, one should carefully consider other

organizations as well. For instance, frontal and multifrontal approaches are rapidly gaining

in popularity as reordering algorithms for these sparse structures are becoming more robust

and vectorization of multifrontal solvers has been accomplished with great success. These

matrix structures are certainly good candidates for implementation in the Testbed and

41



such an implementation would no doubt assist in the advancement of the state of the art

in computational structural mechanics. One should be cautious, however, at leaping to

the adoption of one particular structure in favor of all others since no one structure will

provide both the efficiency and the flexibility necessary to develop and exercise the wide

variety of CSM algorithms expected to result from research and development use of the

Testbed.

42



5. References

1. Stewart, Caroline B. (compiler): The Computational Structural Mechanics Testbed

User's Manual. NASA TM-100644, 1989.

2. Whetstone W. D.: Computer Analysis of Large Linear Frames. Journal of the Struc-

turalDimsion, ASCE, vol, 95, no. STll, November 1969, pp. 2401-2417.

3. Regelbrugge, Marc E. and Wright, Mary A.: The CSM Testbed Matrix Processors

Internal Logic and Dataflow Descriptions. NASA CR-181742, 1988.

4. Felippa, Carlos A.: Solution of Linear Equations with Skyline-Stored Symmetric Ma-

trix. Computers and Structures, vol. 5, 1978, pp. 13-29.

5. Wright, Mary A.; Regelbrugge, Marc E.; and Felippa, Carlos A.: The Computational

Structural Mechanics Testbed Architecture: Volume IV- The Global-Database Man-

ager GAL-DBM. NASA CR-178387, January 1989.

6. Gibbs, Norman E.; Poole, William G., Jr.; and Stockmeyer, Paul K.: An Algorithm for

Reducing the Bandwidth and Profile of a Sparse Matrix. SIAM Journal of Numerical

Analysis, vol. 13, no. 2, April 1976, pp. 236-250.

7. Stewart, Caroline B. (compiler): The Computational Structural Mechanics Testbed

Data Library Description. NASA TM-100645, 1988.

8. Felippa, Carlos A.: Iterative Procedures for Improving Penalty Function Solutions of

Algebraic Systems. International Journal for Numerical Methods in Engineering, vol.

12, 1978, pp. 821-836.

9. Whetstone, W. D.: SPAR Structural Analysis System Reference Manual, vols. i-4.

NASA CR 158970-1, December 1978.

10. Almroth, B. O.; Brogan, F. A.; and Stanley, G. M.: Structural Analysis of Gen-

eral Shells, vol. II - User Instructions for STAGSC-1, Report No. LMSC-D633873,

Lockheed Pals Alto Research Laboratory, Pals Alto, CA, December 1982.

11. Rankin, C. C.; Stehlin, P.; and Brogan, F. A.: Enhancements to the STAGS Computer

Code. NASA CR-4000, November 1986.

12. Riks, E.: On the Numerical Solution of Snapping Problems in the Theory of Elastic

Stability:SUDDAR Report No. 410, Stanford University,Stanford CA, 1970.

43



13. Riks, E.: Progress in Collapse Analysis, Journal of Pressure Vessel Teehnoloffy, ASME,

vol. 109, 1987, pp. 33-41.

14. Crisfield, M. A.: A Fast incremental/Iterative Solution Procedure that Handles Snap-

Through. Computers and Structures, vol. 13, 1983, pp. 55-62.

15. Thurston, G. A.; Brogan, F. A.; and Stehlin, P.: Postbuckling Analysis Using a

General-Purpose Code. AIAA Journal, vol. 24 no. 6, June 1986, pp. i013-1020.

16. Rankin, C. C. and Brogan, F. A.:: Application of the ThurSton Bifurcati0n Solution

Strategy to Problems with Modal Interaction. AIAA Paper No. 88-2286_ 1988,

44



Report Documentation Page

1.NASAReportCR-181951N°" 12. Government Accession No. 3. Reciptent's Catalog No.

4. Title and Subtitle

Comparison of Two Matrix Data Structures for Advanced CSM

Testbed Applications

7. Author(s)

M. E. Regelbrugge, F. A. Brogan, B. Nour-Omid, C. C. Rankin and

M. A. Wright

9. Performing Organization Name and Address

Lockheed Missiles and Space Company, Inc.

Research and Development Division
3251 Hanover Street

Palo Alto, California 94304

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

5. Report Date

December 1989

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-63-01-10

11. Contract or Grant No.

NAS1-18444

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitors: W. Jefferson Stroud and Norman F. Knight, Jr.

16. Abstract

This document is divided into three sections. The first section describes data storage schemes presently

used by the CSM Testbed sparse matrix facilities and similar, skyline (profile) matrix facilities. The

second section contains a discussion of certain features required for the implementation of particular

advanced CSM algorithms, and how these features might be incorporated into the data storage schemes

described previously. The third section presents recommendations, based on the discussions of the prior

sections, for directing future CSM Testbed development to provide necessary matrix facilities for advanced

algorithm implementation and use.

17.Key Words (Suggestedby Authors(s))
Structuralanalysis

Matrix methods

Substructuring

19. Security Classlf.(of this report)
Unclassified

18. DistributionStatement

Unclassified--Unlimited

Subject Category 59

20. Security Classif.(of this page)Unclassified 21. No. of Pages ] 22. Price51 l A04
NASA FORM 1616 oct se

For sale by the National Technical Informatlc, n Service, Springfield, Virginia 22161-2171




